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Abstract
This paper summarizes the progress and activities of tropical cyclone (TC) operational forecast centers during the last four years (2018–2021). It is
part II of the review on TC intensity change from the operational perspective in the rapporteur report presented to the 10th International Workshop on
TCs (IWTC) held in Bali, Indonesia, from Dec. 5–9, 2022. Part I of the review has focused on the progress of dynamical model forecast guidance.
This part discusses the performance of TC intensity and rapid intensification forecasts from several operational centers. It is shown that the TC
intensity forecast errors have continued to decrease since the 9th IWTC held in 2018. In particular, the improvement of rapid intensification forecasts
has accelerated, compared with years before 2018. Consensus models, operational procedures, tools and techniques, as well as recent challenging
cases from 2018 to 2021 identified by operational forecast centers are described. Research needs and recommendations are also discussed.
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Fig. 1. Trend of RMS intensity forecast errors at different forecast lead times
for North Atlantic storms from NHC since 1990. A linear trend line over the
years is shown for each lead time (dashed lines).

Table 1
NHC's RMS intensity forecast errors (kt) and 95th percent confidence intervals
calculated during 1990–1999, 2000–2009, and 2010–2019 for all forecast
times.

Forecast Time (h) 1990–99 2000–09a 2010–19

12 6.1 ± 0.3 6.6 ± 0.3 5.7 ± 0.3

24 9.8 ± 0.5 10.1 ± 0.5 8.5 ± 0.5

36 12.7 ± 0.7 12.5 ± 0.7 10.4 ± 0.7

48 15.3 ± 0.9 14.7 ± 0.8 12.0 ± 0.7

72 18.8 ± 1.2 18.3 ± 1.1 13.8 ± 1.0

96 – 19.3 ± 1.4 14.5 ± 0.9

120 – 21.0 ± 1.7 15.2 ± 1.2

a 96 h and 120 h forecasts began in 2001.
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1. Introduction

Tropical cyclone (TC) forecasts usually rely on observa-
tions, numerical weather prediction (NWP) dynamical model
forecast guidance, as well as specific techniques and tools
used by field forecasters. As discussed in the rapporteur report
on TC intensity change from the operational perspective
presented to the 10th IWTC1 held in Bali, Indonesia, from
Dec. 5–9, 2022, TC intensity forecasts have continued to
improve since the 9th International Workshop on Tropical
Cyclones (IWTC) in 2018. Zhang et al. (2023) summarized
the improvements made in the intensity forecast guidance
from dynamical models since the 9th IWTC, as part I of the
review into operational perspectives on TC intensity change
during the last four years (2018–2021). This paper is part II of
the review, summarizing the progress made in TC intensity
forecasts by operational TC forecast centers as well as chal-
lenges. Note that TC intensity means the maximum sustained
10-m wind speed unless otherwise specified in the following
discussion.

Section 2 presents the annual TC intensity forecast errors
from the National Hurricane Center (NHC), Joint Typhoon
Warning Center (JTWC), and regional specialized meteoro-
logical center (RSMC) Tokyo – Typhoon Center. Section 3
reviews several consensus models used by operational centers.
Section 4 is contributed by NHC, JTWC, and other RSMCs,
describing current operational procedures in these respective
centers. Section 5 presents the performance of rapid intensifi-
cation (RI) forecasts and challenges. Modeling challenges
identified by forecasters are described in Section 6, along with
a list of difficult cases. Recommendations for the research and
operational communities for the next four years are given in
Section 7. For convenience, a list of acronyms used in the
paper is provided at the end of the paper.

2. Performance of TC intensity forecasts by operational
centers

The performance of TC intensity forecasts has continued to
improve. This section presents the inter-annual TC intensity
forecast errors contributed by NHC, JTWC, and RSMC Tokyo
– Typhoon Center.
2.1. NHC
Table 2
Composite intensity skill and the frequency of NHC's official forecast out-
performing Decay-SHIFOR5 averaged over the entire forecast period by
decade.

Decades OFCL Intensity

Skill

Frequency of

outperformance

1990–1999 (12 h–72 h) 9% 56%
a

Fig. 1 shows the yearly trend of the root mean square (RMS)
intensity forecast errors at different forecast lead times for
North Atlantic (NATL) storms from 1990 to 2021. There is a
clear trend that the forecast errors for all lead times have
decreased over the years, with the greatest improvement for the
120-h forecast lead time (Cangialosi et al., 2020). Table 1 lists
the NHC's RMS intensity errors and the 95th percent confi-
dence intervals calculated by decade for all forecast times. The
RMS errors at 72 h decreased from 18.8 kt in 1990–99 to
1 https://community.wmo.int/meetings/tenth-international-workshop-
tropical-cyclones-iwtc-10.
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13.8 kt in 2000–2019. The 120-h forecast errors decreased
from 21 kt in 2000–2009 to 15.2 kt in 2010–2019. Table 2
shows the composite intensity skill and the frequency of the
NHC's official forecast (OFCL) outperforming Decay-
SHIFOR5 (Climatology and Persistence model; DeMaria
et al., 2023) averaged over the entire forecast period by
decade. Compared with 1990–99, the NHC's official intensity
forecast skill averaged from 12- to 120-h lead times increased
from 16% in 2000–09 to 24% in 2010–19, compared with
Decay-SHIFOR5, with the frequency of outperformance
increasing from 59% to 64%. The improvement of official
forecasts is partially attributed to the improved NWP dynam-
ical models as summarized in Zhang et al. (2023).
2000–2009 (12 h–120 h) 16% 59%

2010–2019 (12 h–120 h) 24% 64%

a 96 h and 120 h forecasts began in 2001.

https://community.wmo.int/meetings/tenth-international-workshop-tropical-cyclones-iwtc-10
https://community.wmo.int/meetings/tenth-international-workshop-tropical-cyclones-iwtc-10
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2.2. JTWC
The RMS intensity forecast errors in the Western North
Pacific (WNP) basin from JTWC forecasts have continued to
decrease since 2018, consistent with the long-term 20-year
trend (Fig. 2). The RMS errors at lead times of 72–120 h set
a record low in 2021, and RMS errors at a lead time of 48 h
was the second-lowest recorded. The averaged short-term in-
tensity error at 24-h lead time is 10.0 kt during 2018–2021, a
12% improvement relative to the 2000–2017 mean of 11.3 kt, a
time period during which the error trend was nearly flat. JTWC
forecast skill relative to the Statistical Typhoon Intensity
Forecast (ST5D; Knaff et al., 2003) also generally increased in
the WNP basin during 2018–2021, with record high skill in
2021 for lead times of 72–120 h (Fig. 3). This is consistent with
the general increasing trend in intensity forecast skill observed
since around 2010.
2.3. RSMC Tokyo – Typhoon Center
In 2016, the RSMC Tokyo – Typhoon Center began trialing
the Typhoon Intensity Forecast Scheme (TIFS), the JMA's
Fig. 2. JTWC annual RMS intensity forecast errors from 2001 to 2021 at lead
times of 24, 48, 72, 96, and 120 h for TCs in the WNP basin. A linear trend line
over the years is shown for each lead time (dashed lines).

Fig. 3. JTWC annual mean intensity skill relative to the Statistical Typhoon
Intensity Forecast (ST5D) from 2001 to 2021 at lead times of 24, 48, 72, 96,
and 120 h for TCs in the WNP basin. A linear trend line over the years is shown
for each lead time (dashed lines).
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WNP version of Statistical Hurricane Intensity Prediction
Scheme (SHIPS) (Yamaguchi et al., 2018). TIFS is developed
by Japan Meteorological Agency (JMA) along with the
simultaneously produced Logistic Growth Equation Model
(LGEM) (DeMaria 2009) and the Rapid Intensification Index
(RII) (Kaplan et al., 2010).

Fig. 4a shows that the RMS errors of the official RSMC
Tokyo intensity forecasts decreased in 2017, which is partially
attributable to the use of TIFS data and the fact that there were
fewer RI events during the year. Fig. 4b also shows that official
forecasts have been greatly improved since 2016. RSMC
Tokyo began using these intensity guidance models on an
operational basis in 2019 (Ono et al., 2019).

3. Consensus model guidance

Consensus models are used by forecasters to blend multiple
TC intensity and track forecasts including dynamical and sta-
tistical models. This section discusses the updates of NHC and
JTWC consensus models.
3.1. NHC consensus models
In early years, NHC's forecasters were challenged by having
few NWP models available to consider in their efforts to
Fig. 4. (a) RMS errors of RSMC Tokyo official intensity forecasts for the WNP
basin. (b) RSMC Tokyo official intensity forecast skill relative to SHIFOR
(statistical baseline, Jarvinen and Neumann 1979; Knaff et al., 2003). Linear
trend lines are shown for the 24 h, 48 h, and 72 h lead times for errors and skills
(dashed lines).
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produce the best official forecast. As the number of skillful
track forecast models increased in the 1970s–1990s, however,
they became faced with a new challenge: how to make the best
use of multiple models that sometimes provided a wide
geographical range of guidance tracks. Lacking a priori
knowledge of which model outcomes were likely to be the
most accurate, NHC usually forecast the track to be within the
geographic spread of the typically best-performing models,
often not far from the middle as they could determine subjec-
tively. The forecasters came to realize that approach over the
long haul led to smaller errors than any of the individual
models. Software was then developed to provide arithmetic
averages of the typically best-performing computer model
forecasts to the forecaster (Sampson and Schrader 2000). These
so-called consensus models have led the way in track fore-
casting accuracy during most of the past 15 years.

Beginning in 2008, NHC had a sufficient number of in-
tensity models to create an intensity consensus. There are today
two types of consensus aids. Both are discussed below and
each has its advantages. A “simple” consensus model equally
weights each member (Sampson et al., 2008). A “corrected”
consensus often weights models differently and considers past
error characteristics in attempting to correct for member biases
(Simon et al., 2018). It is hoped that continued improvement of
the equally weighted and corrected consensus aids will allow
for further improvements in skill of the NHC intensity
forecasts.

3.1.1. Simple consensus models - intensity variable model
consensus (IVCN)

The Intensity Variable Consensus model (IVCN) was one of
the first simple consensus aids used in NHC operations. In
2008, the makeup of IVCN was a four-member average of
SHIPS, LGEM, and the interpolated early versions of the
Geophysical Fluid Dynamics Laboratory (GFDL) and Hurri-
cane Weather Research and Forecast (HWRF) models. The
IVCN was quite successful in 2008, as it had more skill than
any of the individual members and slightly more skill than
NHC official forecasts. It should be mentioned that IVCN is a
variable consensus model, meaning the composition of the
consensus changes based on model availability. For example,
sometimes, the 120-h forecast is based on a different set of
members than the 12-h forecast. At the conclusion of every
hurricane season, NHC evaluates IVCN, looks at the perfor-
mance of alternatives, and makes adjustments accordingly. As
of this writing, IVCN is a five-member model that includes
equal weighting of SHIPS (DeMaria et al., 2005), LGEM, and
the interpolated early versions of HWRF, Hurricanes in a
Multi-Scale Ocean-Coupled Non-hydrostatic model (HMON;
Mehra et al., 2018; Wang et al., 2019), and the version of the
U.S. Navy's Coupled Ocean/Atmosphere Mesoscale Prediction
System for TCs (COAMPS-TC) that uses GFS initial and
boundary conditions (CTCX; Doyle et al., 2014). Because of
the improvement in the dynamical models, a new consensus
aid, called IVDR, was first computed at NHC in 2018. The
composition of IVDR includes a double-weight for the inter-
polated versions of CTCX, HWRF, and HMON, and single
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weight for the interpolated version of GFS, SHIPS, and LGEM.
During the past couple of hurricane seasons, IVDR has
generally had slightly more skill than IVCN (not shown) due to
the improved performance of regional models (CTCX, HWRF,
and HMON).

3.1.2. “Corrected” consensus models - HFIP Corrected
Consensus Approach (HCCA)

Beginning in 2015, the HFIP (Hurricane Forecast
Improvement Project) Corrected Consensus Approach (HCCA)
was implemented at NHC to provide “in-house” track and in-
tensity forecast guidance (Simon et al., 2018). The consensus is
broadly based on the technique used in the proprietary Florida
State Superensemble (see Krishnamurti et al., 1999; 2010;
2011; Williford et al., 2003) but specifically tailored to NHC's
operational constraints. Since 2015, HCCA has been one of the
best performing guidance models for both track and intensity in
the Atlantic basin (not shown).

The HCCA intensity forecasts rely on a mix of statistical-
dynamical and dynamical model forecasts that are basin-
specific. Unequal weighting coefficients are derived from a
set of training forecasts and applied to the input model pre-
dictions to create the HCCA forecast. To allow for operational
flexibility, a forecast-specific training set is created in real-time
to match the input model availability of the current forecast.
Based on input model sensitivity experiments, the HWRF and
CTCX forecasts currently make the largest contribution to the
positive skill of the HCCA intensity forecasts in the Atlantic
basin.
3.2. JTWC consensus models
The primary TC intensity consensus forecast aid computed
and utilized by JTWC is called ICNW, an equal-weighted
variable consensus of five core inputs: HWRF, CTCX, GFS,
SHIPS using NCEP GFS forecast parameters, and SHIPS using
Navy Global Environmental Model (NAVGEM) forecast pa-
rameters. A sixth member, the Rapid Intensity Prediction Aid
(RIPA) (Knaff et al., 2018; 2020) is added to the consensus
when it predicts at least a 40 percent chance of RI defined by
any of the following thresholds: 20 kt in 12 h, 25, 30, 35, or
40 kt in 24 h, 45 or 55 kt in 36 h, 55 or 70 kt in 48 h, and 65 kt
in 72 h. The RIPA intensity forecast added to the consensus is
constructed from a constant rate of intensification matching the
RI threshold with the highest probability, terminating at the end
of the time interval associated with that threshold. The addition
of this short RI-triggered deterministic forecast results in no
noticeable shock in the variable ICNW's temporal variation,
but rather a subtle nudge to higher intensity forecasts.

Beginning in 2022, JTWC will be evaluating a separate,
experimental intensity consensus (ICNE) containing additional
guidance on RI, with the goal of reducing negative intensity
biases in ICNW during RI cases. Contributing to this new
consensus are several new RI intensity aids that have been
recently developed utilizing a variety of statistical techniques
(Sampson et al., 2022). Among these is the aforementioned
RIPA, which uses logistic regression on storm and
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environmental parameters from SHIPS to produce a probabi-
listic RI forecast. An alternative Forest-based Rapid Intensifi-
cation Aid (FRIA, Slocum 2021) was developed using a
random forest algorithm on the same parameter set to yield an
RI forecast with an independent method. The Rapid Intensifi-
cation Deterministic Ensemble (RIDE, Knaff et al., 2022) uses
logistic regression on existing statistical and dynamical TC
intensity aids to determine the likelihood of RI. Two additional
RI aids are included based on the Coupled Hurricane Intensity
Prediction System (CHIPS; Emanuel et al., 2004) ensemble
(CHR4) and the COAMPS-TC ensemble (CTR1; Komaromi
et al., 2021). These two ensembles generate forecasts when
the RI probability reaches 50 percent and 10 percent, respec-
tively. The ICNE consensus is then formed by taking the
members of ICNW other than HWRF and replacing them with
one of RIPA, FRIA, CTR1, CHR4, or RIDE if their respective
thresholds for generating an RI forecast are triggered (10
percent for CTR1, 40 percent for all others). The result is thus a
deterministic intensity forecast based on RI aids when RI is
predicted, falling back to the standard members of ICNW when
RI is not predicted. Fig. 5 compares the mean absolute error
and bias for ICNE and ICNC (ICNW without RIPA) during
cases from the years 2020–2021 when at least one of ICNE's
members is triggered. The result for ICNE is little change in
mean error compared to ICNC, but a reduction in bias at short
lead times, by more than 5 kt at a lead time of 36 h relative to
ICNC. During its evaluation period, JTWC hopes to see ICNE
mimic 2020–2021 statistics, and demonstrate skill in real-time
RI scenarios when the consensus of standard forecast aids tends
to underpredict TC intensity. Finally, as NWP models improve
and more RI aids are developed, JTWC consensus aids will
change and likely continue to improve.

4. Operational intensity procedures

Historically, the adoption of novel forecasting tools and
applications into operations has typically lagged the basic
science. Operational forecasters are presently using many of
the forecast concepts and tools either objectively via direct use
Fig. 5. RMS errors (sloid lines) and biases (dashed lines) of intensity forecast
(kt) at different lead times for ICNE (red) vs. the control ICNC (blue) for cases
during 2020–2021 during which at least one deterministic RI aid in ICNE is
triggered. Sample sizes are shown in parentheses along the abscissa.
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of the forecast aids themselves or subjectively by applying
knowledge that is provided by those forecasting tools to indi-
vidual forecasts. Encouragingly, intensity forecasts have
continued to become more skillful as the forecasting aids,
which are numerical weather prediction, statistical or statistical-
dynamically based, have improved. The documentation of
these overall improvements of guidance and operational fore-
casts are described in various annual reports (e.g., Cangialosi
2021; Francis and Strahl 2021; JMA 2020; Mohapatra and
Sharma 2019). These generally show improvements or a
leveling off of improvements in the past four to five years,
depending on forecast lead time and seasonal difficulty. The
largest improvements are readily seen in intensity forecasts at
the 24-h to 72-h forecast lead-times.

TC forecasting centers from around the world among others
routinely forecast TC intensities out to day 5. Forecasters
analyze the current and future atmospheric and oceanic envi-
ronmental factors as a baseline to determine how strong the TC
is currently and to aid in future projections. Analyzing the
current intensity of a TC is often based on a blend of satellite,
radar, and aircraft information and although the forecasting
centers do not list uncertainty in the initial intensity, the true
intensity of a TC is often impossible to fully measure. There-
fore, the initial intensity listed in the advisories and post-
analyzed best tracks are the forecaster's interpretation of the
most accurate data.

This section briefly describes how operational centers use
available products and tools to produce TC intensity forecasts,
depending on their experience and geographic locations.
4.1. NHC
The operational procedure of forecasting TC intensity is to
analyze a combination of statistical-dynamical guidance (e.g.,
SHIPS, LGEM) and TC-specific dynamical regional models
(e.g., HWRF, HMON, COAMPS-TC). Forecasters are quite
skilled at assessing the models' performance and using com-
binations of projections to come up with their own forecast.
There is no specific rule on how to make a TC intensity
forecast, however. It needs to be emphasized that producing a
TC intensity forecast is subjective and a blend of science, art,
and consistency. The consistency factor is quite important, as
forecasting centers are focused on the service they provide and
try very hard to make changes gradually. The NHC official
forecasts (i.e. OFCL) have been consistently performing quite
well, and had skill values close to the best aids IVCN and
HCCA (Fig. 6).

Forecasters are well aware that vertical wind shear affects
the predictability of intensity change and subjectively apply
that information to their forecasts. Complex interactions be-
tween upper-level storm outflow and environmental upper-
level wind shear have been documented in Ryglicki et al.
(2018a, 2018b, 2019). These interactions that can be modu-
lated by convective storm outflow (Ryglicki et al., 2020) are
currently trying to be addressed by improved use and analysis
of satellite-based atmospheric motion vectors (DeMaria et al.,
2022), and will be tested soon in operations. In a similar



Fig. 6. Homogenous comparison for selected Atlantic basin early intensity
guidance models for 2019–2021. OFCL is the NHC official forecast. The
number of sample at each lead time is shown in parentheses.
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vein, the response of a TC to the formation of a secondary
eyewall is often mentioned in the TC discussions. The
Microwave-based Probability of Eyewall Replacement Cycle
tool that predicts the probability of secondary eyewall forma-
tion in the future (no specific time) is sometimes used for
making decisions regarding future intensification, and a com-
parison with RMSC, Miami's analyses is presented in Pulmano
and Joykutty (2021). Additionally, forecasters routinely
monitor microwave imagery that reveals the convective
(85–91 GHz) and microphysical structures (37 GHz) for evi-
dence of improved organization in both the emissions (e.g.,
increased warm/stratiform rain, increased symmetry) and
scatter (circular bands, eyewall formation, secondary eyewall
formation) signatures.

Globally there has been a push to use artificial intelligence
and machine learning techniques to advance predictive capa-
bilities. Some new methods have been developed (Griffin et al.,
2022; Su et al., 2020; Wei and Yang 2021), but as is the case
with basic research there is a time lag between the development
of new forecast aids and their operational implementation.
Studies by Cloud et al. (2019) and Su et al. (2020) showed that
neural network methods can provide more accurate predictions
of TC intensity change, including RI, than current operational
guidance. If those results prove to be robust in an operational
setting, that will lead to further improvements in operational RI
prediction. Time will tell if continued improvement in methods
and models will produce better forecasts of intensity as we are
running into barriers caused by NWP predictability and un-
certainty in our basic measurements of intensity operationally
(see Torn and Snyder 2012; Combot et al., 2020). Nonetheless
it is obvious that improved guidance has led to improvements
to this point and there is little doubt that will continue at least
for a while.
4.2. RSMC New-Delhi (IMD)
Fig. 7. Pre-genesis forecast issued at the stage of low-pressure area on 17th
March (3 days prior to formation of depression over the southeast Bay of
Bengal on 20th March and 5 days prior to actual landfall over Myanmar on
22nd March) (Source: Preliminary Report published by RSMC New Delhi,
2022).
TC forecasts in RSMC at New Delhi rely on dynamical and
statistical models. Since 2018, RSMC New Delhi (IMD) issues
track and intensity forecast of TCs from the stage of depres-
sion, where the maximum sustained wind (MSW) is 17–27 kts,
55
onwards with a lead time of 72 h (Mohapatra and Sharma,
2019) and disseminates 5 times a day (i.e. based on observa-
tions at 00, 03, 06, 12 and 18 UTC). The lead period of forecast
extends up to 120 h and frequency of bulletins increases to 8
times per day (i.e., 3-hourly observations at 00, 03, 06, 12, 18
& 21 UTC) from the stage of cyclonic storm (MSW ≥34
knots). Recently from March 2022, IMD has also introduced
the pre-genesis of track and intensity forecast up to next 72 h
from the stage of low-pressure area (shown in Fig. 7).

The forecast generation process of RSMC at New Delhi
utilizes the TC forecasts from three different categories of
NWP systems: individual deterministic models, single model
ensemble prediction system (EPS), and multi-model ensemble
(MME). The deterministic models include (i) NCEP-GFS, a
12-km and 10-day global model (i.e., horizontal resolution
~12 km and forecast duration of 10 days), (ii) NCMRWF
(National Center for Medium Range Weather Forecasting)
Unified Model (NCUM), a 12-km and 10-day global model,
(iii) NCEP-Global Ensemble Forecasting System (GEFS),
global probabilistic model (resolution and forecast duration are
similar to NCEP-GFS), (iv) NCMRWF Ensemble Prediction
System (NEPS), (resolution and forecast duration are similar to
NCUM), (v) 3-km and 3-day mesoscale Weather Research
Forecast (WRF) model, (vi) 4-km and 5-day NCUM-Regional
model, and (vii) 2-km and 5-day HWRF model for cyclone
prediction. IMD also makes use of NWP products prepared by
other operational NWP centers like NCEP-GFS, USA, JMA,
UK Met Office (UKMO), Global Tropical model, Meteo-
France etc. Statistical cyclone intensity prediction (SCIP)
model (Kotal et al., 2008), RI model (Kotal et al., 2008) are
developed and operated using various NWP model outputs
described above. The MME for cyclone track forecast (Kotal
and Bhowmik, 2011) is based on a statistical linear regres-
sion approach using five operational NWP models (ECMWF,
IMD-GFS NCEP-GFS, UKMO, and JMA). The single model-
based ensemble forecast products over Northern India Ocean
from ECMWF (50 + 1 Members), NCEP (20 + 1 Members),
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UKMO (23 + 1 Members) and Meteorological Services,
Canada (MSC) (20 + 1 Members) and JMA (20 + 1 Members)
are also available to provide guidance in near real-time. The
super-ensemble has also been developed based on the above
ensembles. A typical operational intensity forecast during
extremely severe cyclonic storm Tauktae is presented in Fig. 8.
4.3. RSMC Tokyo – Typhoon Center
TIFS, LGEM, RII, cyclone phase space (Hart 2003), and
intensity forecasts based on deterministic NWP models such as
JMA's Global Spectral Model (GSM) and regional mesoscale
model, HWRF, NCEP GFS, ECMWF IFS, and MOGM (Met
Office Global Model) are used for TC intensity forecasting.
Forecasting primarily involves the use of TIFS data as a basis
along with analysis of LGEM, RII, cyclone phase space, and
NWP model forecasts to develop intensity change scenarios,
including rates of change in intensity, peak intensity and
related timing, and extratropical transition. This approach
clarifies individual model characteristics and related consider-
ations in specific cases, e.g., RII and HWRF forecasts for po-
tential RI occurrence. The JMA regional mesoscale model is
mainly used to forecast TCs approaching Japan, since it tends
to favorably predict topography-related changes in intensity.
JMA's GSM forecasts are particularly reliable for TCs in the
extratropical transition stage.

For the TC formation stage, during which TIFS data tend to
be overdeveloped (e.g., Shimada et al., 2018), the estimated
rate of intensity change in RSMC official forecasts is often
smaller than that in TIFS guidance. For the subsequent inten-
sification stage, the TIFS intensity change rate is adjusted on
the basis of the latest Dvorak analysis and used for official
Fig. 8. Observed and forecast track of extremely severe cyclonic storm Tauktae
based on 0600 UTC of 16th May 2020 (42 h prior to landfall) (Source: RSMC
New Delhi, 2022).
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RSMC forecasting. In addition, water vapor imagery showing
dry air intrusion, and microwave imagery showing TC struc-
tural changes are also taken into account.
4.4. The Bureau of Meteorology (BoM)
The intensity forecast process at BoM begins with an
assessment of the analysis fix and the current large-scale
environment (e.g., upper-level flow, vertical wind shear,
ocean heat content, atmospheric moisture, low-level inflow,
and any surface friction the system may encounter). Consid-
ering the trend of intensity change in the past 24-h in addition
to any expected change in the broad scale environment leads to
an initial intensity forecast estimate in the Dvorak T-no
framework. For example, D for 0–24 h, D+ 24–48 h, D-/S for
48–72 h, W 72–96 h etc. where D represents an increase of
1.0 T-no per day.

Following from this initial estimate a full review of objec-
tive NWP intensity estimates is performed, utilizing both
deterministic, high-resolution models and ensemble prediction
systems. Ensemble guidance is typically used for trends in
intensity forecasting rather than absolute intensity values due to
poor performance in determining peak intensity values that is
confirmed with verification. Other inputs that are considered
include JTWC's version of SHIPS and ICNW guidance as well
as RII. Consistency between NWP models is an important
consideration, with intensity forecasting bias given to the better
performing and higher resolution models.

Combining all these factors - the analyzed intensity trend,
the assessment of objective guidance and the subjective anal-
ysis of the potential change to the environment is what ulti-
mately determines the forecast intensity. Typically, a synoptic
assessment and persistence approach is heavily weighted
within 0–24 h, after which objective guidance and consistent
trends in NWP become more influential. Weight is given to-
wards models that have shown consistency over a series of
model runs, though it is noted when any of the guidance makes
a significant change to intensity as something to monitor on
subsequent model runs. RI can also be forecast in the short-
term (0–48 h) when there are enough objective aids and
environmental indicators that assess it to be a risk, however it is
very seldom forecast at longer lead times due to the difficulty
of picking the timing of such a rate of change.

As a final consideration, previous forecast policy is assessed
to avoid fluctuation from one forecast to the next. This is more
typically applied when considering intensity beyond 48 h and
when there is a lack of consistency in NWP intensity and trends
in intensity. Significant changes to intensity forecasts are only
made when there is overwhelming evidence to do so.

5. Dealing with rapid intensity changes in operational
centers

Accurately forecasting the rapid intensity changes of TCs
remains a challenge despite recent improvements in the overall
performance of TC intensity forecasts. Improving the forecast
of rapid intensity changes is a high priority of operational
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centers. This section briefly describes the progress and/or
challenges of dealing with rapid intensity changes contributed
by NHC, JTWC, BoM, and JMA.
5.1. NHC
Fig. 9. POD for intensification rates of 20 kt or greater over the 24 h forecast
period of 12–36 h for North Atlantic storms. Trend lines are shown for OFCL
(black), SHIPS (red), and HWFI (blue). HWFI is the early interpolated fore-
casts by HWRF. The number of verifying events for each year is shown in
green.

Fig. 10. Same as Fig, 9 except for false alarm rate.
The statistical-dynamical models rarely predict rapid in-
tensity changes. Before 2017, the limited horizontal resolution
of the GFDL and early versions of the HWRF model restricted
the ability of these two models to predict large intensity
changes. Without reliable guidance, the NHC official forecast
rarely included large changes in intensity (Blake et al., 2016).
To partially address the limitation of the statistical-dynamical
models, a new component was added to the SHIPS model
(i.e., RII), beginning in 2001 (Kaplan and DeMaria 2003). RI
was defined as a 30-kt or greater increase in the maximum
wind speed in 24 h, based roughly on the 95th percentile of the
observed intensity changes in the Atlantic basin. The RII treats
RI forecasting as a classification problem, where a subset of the
SHIPS predictors are used to discriminate RI cases from non-
RI cases. The output of the RII is a probability of RI, which
forecasters subjectively use to supplement deterministic model
output. The RII has improved since the initial 2001 version
(DeMaria et al., 2021).

DTOPS (Deterministic TO Probabilistic Statistical model)
was introduced in 2018. It has been developed for NHC and
uses IFS, GFS, HWRF, LGEM, and SHIPS guidance. It applies
binomial logistic regression to deterministic model forecasts,
along with basic vortex and geographic parameters, to produce
a probabilistic forecast of RI. DTOPS is currently the most
skillful among NHC's probabilistic RI guidance. The generally
good DTOPS performance shows that the deterministic models
contain useful RI information even though their probability of
detection (POD) values for RI are generally fairly low when
used directly to forecast RI (DeMaria et al., 2021). To measure
programmatic progress in forecasting RI, HFIP has introduced
a new RI metric that calculates the traditional mean absolute
error only in those cases where RI occurred in the verifying
best track or was forecast. With this metric, NHC RI forecasts
have improved by about 20–25% compared with the
2015–2017 baseline (DeMaria et al., 2021).

The POD for intensification rates of 20 kt or greater over the
24-h forecast period of 12–36 h is shown in Fig. 9 for the
NHC's OFCL, SHIPS, and HWRF from 1990 to 2019 (SHIPS
and HWRF forecasts began in 1991 and 2007, respectively).
The sample size is dramatically increased using a 20 kt or
greater threshold (compared to the strict definition 30 kt over a
24-h forecast period for RI). Despite the large amount of year-
to-year variability, OFCL and HWRF exhibited a positive trend
of increasing POD for these events. For HWRF, increasing
horizontal grid resolution (e.g., the horizontal grid spacing of
the innermost nest of HWRF decreased from 3 km to 2 km in
2015, and then to 1.5 km in 2018) and improvements to the
physical parameterizations and data assimilation techniques
have helped the model resolve these intensification rates while
limiting false alarms. These improvements in model guidance
and the introduction of RI probability guidance (e.g., RII) has
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provided NHC forecasters with the ability to better discriminate
between real and false intensification events in model pre-
dictions, helping to improve the POD. Despite the improve-
ments in POD over recent years, Fig. 10 shows that there has
been no notable improvement in the false alarm rates (FAR) for
the same short-term intensification rates of 20 kt or greater in
the NHC forecasts or SHIPS and HWRF models. Reducing
FAR should be a priority to be addressed in the near future.
5.2. JTWC
Since 2018, some advances have been made toward
improving intensity forecast skill during RI events. RIPA,
described in Section 3.2, has been in operational use at JTWC
since 2018, and remains the best-performing aid for RI as
measured by Peirce score (Manzato 2007), even against the set
of new experimental RI aids (FRIA, RIDE, CHR4, CTR1) also
described in section 3.2. Fig. 11 shows the Peirce score of all of
these aids for different RI thresholds for cases during the
2020–2021 TC seasons. NWP models HWRF (HWFI) and
COAMPS-TC (CTCI) demonstrate high skill at RI of 65kt/



Fig. 11. Peirce skill scores for RI thresholds of 20 kt/12 h, 30 kt/24 h, 45kt/
36 h, 55 kt/48 h, and 65 kt/72 h for JTWC RI aids, along with the HWRF
(HWFI) and COAMPS-TC (CTCI). Evaluation includes JTWC 2020–2021 TC
seasons. Sample sizes (all cases/RI cases) are annotated along the top of the
figure.
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72 h, while RIPA, FRIA, RIDE and CHR4 peak in skill at RI
of 45 kt/36 h. As discussed in Section 3.2, an experimental
consensus formed from these RI aids and HWRF is currently
being evaluated in JTWC operations, with preliminary statistics
suggesting that it can outperform the standard intensity
consensus aid (ICNW) in cases when RI is predicted by one or
more deterministic RI aids.

A growing challenge to skillful RI forecasting is the
declining frequency of microwave satellite passes over TCs.
The number of currently operational sensors has fallen from 16
to 10 since 2014, and gaps between images of TCs are growing
(Howell 2022). A similar challenge exists for estimates of the
two-dimensional TC surface wind field through scatterometer
or synthetic aperture radar measurements, which are currently
at an inadequate cadence for TC monitoring. Accurate
knowledge of current tropical cyclone core structure is
important to predicting TC intensity, and primarily comes from
low earth orbiting satellites in basins where aircraft recon-
naissance is not conducted.
5.3. BoM
In BoM, rapid intensity change continues to be the most
challenging aspect of operational intensity forecasting due to
only a small number of objective aids to rely upon. From the
perspective of rapidly increasing intensity, the RII is a useful
probabilistic tool indicating risk of occurrence, with some high-
resolution NWP yielding potential upper-bound forecast limits
if RI were to occur. Difficulties arise for systems which do not
have either the RII or high-resolution modeling running until
after identification and development, which is particularly a
risk for small systems that can develop very quickly.

Rapid weakening (RW) of a system also represents a chal-
lenge in forecasting intensity. Typically seen during eyewall
replacement cycles (ERC) these phases of intensity changes
pose challenges in a range of ways. From a short-term fore-
casting or nowcasting perspective, a lack of instantaneous, and
consistently available microwave imagery makes it difficult to
properly assess the eyewall structure to confirm that an ERC is
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occurring and what phase it is currently in to effectively assess
the short-term intensity change trend. From the perspective of
longer lead time forecasting, due to the difficulty of picking the
timing of an ERC occurring, there is no guidance to support
weakening and subsequent strengthening of a system for this
phenomenon.
5.4. RSMC Tokyo – Typhoon Center
RSMC Tokyo shares the challenges of other centers. First,
although the RII supports RI forecasting, there is still room for
improving RI guidance in terms of the forecasting of timing
and magnitude. This is because NWP models do not always
provide adequate guidance due to predictability limitations,
uncertainties and differences in model characteristics. Second,
satellite observation plays an important role in RI forecasts.
The current latency and temporal resolution of microwave
satellite observation complicate forecasting with no delay for
rapid intensity changes associated with the rapid formation of
banding structures or eyewall replacement cycles. With exist-
ing image analysis, it may also be challenging to evaluate the
effects of surrounding dry areas on TC intensity changes (e.g.,
how much of such areas flow into the inner core and whether
this weakens intensity).

6. List of recent difficult cases

Each year, many modelers and forecasters around the world
meet in the HFIP annual meeting (https://hfip.org/events/
annual-review-meetings) to discuss the success and challenges
of TC models and forecasting of the year. Table 3 lists some
challenging storms from 2018 to 2021 identified by operational
centers (NHC, JTWC, and BoM) for the research community to
further investigate. Most of the challenges are associated with
intensity and RI guidance of both models and operational
forecasts. For example, for Hurricane Dorian (05 L) in 2019, all
models (including dynamical and statistical models) and oper-
ational forecasts of early cycles (e.g. 2019082718) failed to
forecast RI, and totally missed hurricane phase (Fig. 12a). None
of the forecasts predicted a near-stationary hurricane over Grand
Bahama for a period of time (Fig. 12b).

Unique challenges for Western Australian tropical system
intensity forecasts are those systems that threaten to rapidly
intensify as they move west off the coast. The significant dif-
ficulty in forecasting intensity for these systems is directly
related to track position with systems remaining over land not
having the potential to develop, and those that move over water
threatening intensification, in some cases, RI. An example of
this scenario was tropical system 12U during late January and
early February 2021. Broad-scale environmental factors were
favorable for intensification of a tropical system over waters
north of Western Australia. Guidance was not consistent for
the steering of the system offshore, however those models that
did track 12U offshore had intensity forecasts increasing
rapidly to be a severe tropical cyclone ( ≥ 64 kt 10-min mean
winds). The outcome for 12U was for a system that remained
inland, and whilst it produced significant rainfall impacts, the

https://hfip.org/events/annual-review-meetings
https://hfip.org/events/annual-review-meetings


Table 3
List of challenging storms from 2018 to 2021.

Year Basin Storm ID Name Forecast Challenges

2018 AL 06 Florence Totally missed first RI and RW; large cross-track errors

AL 14 Michael Too low peak intensity, weak intensification,

AL 13 Leslie Large track errors

EP 12 John Too strong RI, peak intensity timing and magnitude off, large over-forecast errors

EP 02 Aletta Biggest RI miss of the year, 70 kt/24 h

SH 09 Gita Widespread in model guidance and sharply curved track

WP 10 Maria Too weak RI, missed RI from 25 to 130 kt in 54 h

2019 AL 05 Dorian Failed 24 h RI prediction of early cycles, missed hurricane phase. Move too fast, none predicted stall

over Grand Bahama

AL 13 Lorenzo Early cycles missed forecast for second intensity peak

EP 07 Flossie over forecast peak intensity, high bias

EP 13 Kiko Failed RI prediction

EP 15 Lorena Poor track forecasts

WP 10 Lekima Under-forecast RI

WP 11 Krosa Poor track forecasts, quasi-stationary loop

WP 15 Lingling Under-forecast RI

WP 20 Hagibis Under-forecast extreme RI

WP 21 Neoguri Poor track, unanticipated poleward movement

SH 05 Owen Failed prediction of eastward movement

SH 09 Mona False RI prediction

2020 AL 13 Laura Incorrect westward shift 2–3 days before landfall

AL 14 Marco Interaction between Marco and Laura, huge variability in track guidance

AL 18 Sally Track guidance shifted eastward as it approached northern Gulf Coast

AL 31 Iota Under-forecast RI, 70 kt/24 h, most guidance 30–40 kt/36 h

WP 14 Dolphin Poor track, most guidance too far west, mid-latitude flow interaction

WP 16 Chan-Hom Poor track, wider turn

WP 22 Goni Under forecast extreme RI, 80kt/24 h

2021 AL 05 Elsa Over forecast intensity and RI

AL 06 Fred False RI, over forecast intensity

AL 08 Henri Too strong intensity just before landfall, poor, high variability of curved track guidance

AL 15 Ida Under forecast peak intensity

EP 14 Nora Incorrect westward track guidance

EP 15 Olaf Incorrect westward track guidance of Early cycles

EP 16 Pamela False RI, over forecast intensity

EP 17 Rick False RI, over forecast intensity

WP 16 Omais False RI, over forecast intensity for the longest weak storm (10.5day at ~35 kt)
SH 18(12U) Eighteen False RI, over forecast intensity

Fig. 12. (a) Hurricane Dorian intensity guidance for the 2019082718 cycle. Intensity of the best-track is shown in black, while results of models and the NHC
operational forecast are shown in colors. (b) Hurricane Dorian 120 h track guidance for 2019082912 cycle shown in colors, with the best-track in black. Black dashed
circle shows the location of the near-stationary hurricane. (Blake, 2019).
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Fig. 13. Intensity guidance comparison for tropical system 12U issued at 00
UTC, 30 January, 2021. See the list of acronyms for model names.
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wind intensity did not ever increase to Australian tropical
cyclone intensity of 34 kt 10-min mean winds. Fig. 13 shows
intensity forecasts from a range of guidance and the official
forecast intensity issued at 00 UTC 30 January 2021, with the
analyzed post-event best track plotted for comparison.

7. Summary and future direction

This paper is part II of the review on the progress of fore-
casting intensity changes made in the past 4 years (2018–2021)
from the perspective of operational TC forecasts as presented to
WMO IWTC-10, focusing on the updates and challenges
contributed by operational centers. Part I of the review focuses
on dynamical model guidance (Zhang et al., 2023). During the
last 4 years since IWTC-9 was held in 2018, the performance
of intensity forecasting from operational centers such as NHC,
JTWC, and RMSC-Toyko has continued to improve. In
particular, the improvement of RI forecasts has accelerated,
compared with years before 2018. Based on HFIP's metric, RI
forecasts at NHC have improved by about 20–25% since the
2015–2017 baseline period. This may be attributed to the use
of DTOPS, a tool introduced in 2018 and currently the most
skillful among NHC's probabilistic RI guidance. JTWC also
reported that record-breaking improvement in intensity and RI
forecasts has been made since 2018, attributed to the imple-
mentation of RIPA guidance. The successful applications of
DTOPS and RIPA encourage other centers to adapt the existing
guidance or develop their specific tools. Nevertheless, rapid
intensity changes are still major challenges to operational
centers. Several operational centers share the challenge to
skillful RI forecasting due to the declining frequency of mi-
crowave satellite passes over TCs and inadequate scatterometer
or synthetic aperture radar measurements for estimating the
two-dimensional TC surface wind field. A list of difficult cases
is shown for the research community to investigate, potentially
further improving intensity forecasts.

It is worth noting the priority issues or research needs for
intensity forecasts identified by forecasters (Brennan 2019;
Brennan and Cowan 2021; Cowan 2021; DeMaria and
Brennan 2018; Kucas 2020; Zhang et al., 2021), including.
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(1) Dynamical and statistical models generally overpredict
intensity changes in low-shear environments.

(2) Regional dynamical models often predict convection in the
inner core that is too symmetric in environments of vertical
wind shear and/or dry air, leading to high-biased intensity
forecasts;

(3) Regional dynamical models have difficulty in timing RI
onset, and can exhibit large cycle-to-cycle variability in
intensity forecasts.

(4) Poor model track forecasts near land negatively affect in-
tensity forecasts.

(5) Model wind structure forecast skill is difficult to verify and
evaluate and the forecast of wind gusts is not included.

(6) Probabilistic forecast guidance for TC intensity change,
particularly the onset, duration, and magnitude of rapid
intensity change events including ERC, over-water RW
etc. at 2–3 day lead times should be developed or
improved.

Finally, there are two recommendations. Firstly, the research
community is encouraged to address the above needs identified
by forecasters to further improve intensity, RI and RW fore-
casts. Secondly, the transition from research to operations
should be accelerated through, for example, improving
dynamical and statistical models with new findings, exploring
new techniques such as machine learning models, and devel-
oping new RI/RW analysis tools. We are confident that with
the further collaboration of the research and operation com-
munities upgrading models and developing new tools, TC in-
tensity forecasts will continue to improve.
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Climate and Earth-System Simulator
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AVNO ATCF model identifier for NCEP GFS
BoM The Bureau of Meteorology, Australia
CHIPS Coupled Hurricane Intensity Prediction System
CHII Interpolated CHIPS
CHR4 CHIPS ensemble deterministic RI aid
CLP5 5-day Climatology and Persistence Track Forecast
COAMPS-TC Coupled Ocean-Atmosphere Mesoscale Pre-

diction System for TC
CPHC Central Pacific Hurricane Center
CTCI ATCF model identifier for early (interpolated) model

forecasts by CTCX
CTCX ATCF model identifier for GFS-based deterministic

COAMPS-TC
CTR1 COAMPS-TC ensemble RI aid
Decay-SHIFOR5 Statistical Hurricane Intensity Forecast

Model with inland decay (5-day)
DSHIP SHIPS with inland decay
DTOPS Deterministic to Probabilistic Statistical model
ECMWF European Center for Medium-Range Weather

Forecasts
EMXI ATCF model identifier for early (interpolated) model

forecasts by IFS ECMWF
EPS ensemble prediction system
ERC Eyewall Replacement Cycle
FAR False Alarm Rate
FRIA Forest-based Rapid Intensification Aid
GEFS Global Ensemble Forecast System
GEPS Global Ensemble Prediction System
GFDL NOAA Geophysical Fluid Dynamics Laboratory
GFS Global Forecast System
GFSI ATCF model identifier for early (interpolated) model

forecasts by AVNO
GSM Global Spectral Model
HCCA HFIP Corrected Consensus Approach
HFIP Hurricane Forecast Improvement Project
HMNI ATCF model identifier for early (interpolated) model

forecasts by HMON
HMON Hurricanes in a Multi-scale Ocean coupled Non-

hydrostatic model
HWFI ATCF model identifier for early (interpolated) model

forecasts by HWRF
HWRF Hurricane Weather Research and Forecasting System
ICNC ICNW without RI aids
ICNE Experimental intensity consensus aid with RI aids
ICNW Intensity Consensus Aid computed and utilized by

JTWC
IFS Integrated Forecasting System
IMD Indian Meteorological Department
IVCN Intensity Variable Consensus model
IVDR Intensity Consensus of GFSI/DSHIP/LGEM, CTCI/

HWFI/HMNI (double weight)
IWTC international workshop on TC
JMA Japan Meteorological Agency
JTWC Joint Typhoon Warning Center
LGEM Logistic Growth Model
MME multi-model ensemble
MOGM Met Office Global Model
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MSC Meteorological Services Canada
MSM Meso-Scale Model
MSW Maximum Sustained Wind
NAVGEM Navy Global Environmental Model
NCEP US National Centers for Environmental Prediction
NCMRWF National Center for Medium Range Weather

Forecasting
NCUM NCMRWF Unified Model
NEPS NCMRWF Ensemble Prediction System
NHC National Hurricane Center
NOAA National Oceanic and Atmospheric Administration
NWP Numerical Weather Prediction
NWS National Weather Service
OCD5 Operational CLP5 and DSHF Blended Intensity

Forecast
OFCL ATCF model identifier for NHC official forecasts
POD Probability of Detection
RI Rapid Intensification
RII Rapid Intensification Index
RIDE Rapid Intensification Deterministic Ensemble
RIPA Rapid Intensification Prediction Aid
RMS root mean square
RSMC Regional Specialized Meteorological Center
RW Rapid Weakening
SCIP Statistical cyclone intensity prediction
SHIFORStatistical Hurricane Intensity Forecast Model

(climatology and persistence model)
SHIPS Statistical Hurricane Intensity Prediction Scheme
ST5D Statistical Typhoon Intensity Forecast (ST5D)
TC Tropical Cyclone
TIFS Typhoon Intensity Forecast Scheme
UKMO UK Met Office
WRF Weather Research and Forecasting model
WNP Western North Pacific
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